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Models of incoming traffic in packet networks  

Introduction 

Development of the telephone networks required elaboration of teletraffic 

theory [1]. One of the main problems of this theory is investigation of the charac-

teristics of incoming traffic. For analogue and digital telephone network, these 

characteristics have been well studied [2]. Obtained results are not always suitable 

for research of packet networks. New methods of investigation were based on sto-

chastic fractals [3]. In particular, the heavy-tailed distributions [4] are used to de-

scribe the incoming traffic. Such approach yielded a number of useful results. 

On the other hand, some teletraffic models may be analyzed by means of the 

distributions that are defined on interval of finite length. These distributions shall 

be denoted below as ( )flA t . Subscript " "fl  is the first letters in the words "finite 

length ". Such distributions do not have tails. Present article is devoted to the study 

of teletraffic models using distributions ( )flA t . 

Statement of the problem 

Consider a sequence of requests on the input of the teletraffic system. This 

sequence is shown in Figure 1 on the axis "time". It consists of the eight requests. 

Duration between adjacent requests i  and i 1  equals to it . 
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Figure 1. Incoming traffic as a sequence of requests  

Value of 
it  is random variable. It is well known [5] that all characteristics of 

random variable can be calculated from its distribution function ( )A t . The main 

part of teletraffic models describing packet networks is based on distribution func-

tions that are defined on interval  ,a  . It is often assumed that a 0 . 

The usefulness of interval  ,0   should be discussed in more detail. Two 

cases are interesting. In first case the requests are the calls generated by telephone 

set. In second case the requests are the IP-packets produced by personal computer.  

In first case value it  may indeed be either very small or very large. For the 

Plain Old Telephone Service [6], function ( )A t  is well described by an exponential 

distribution. Sometimes this function is well represented with heavy-tailed distri-

butions. Functions defined within interval  ,0   are generally used for such types 

of distributions. Interval of the argument t  has infinite length. Corresponding dis-

tributions shall be denoted below as ( )ilA t . Subscript " "il  is the first letters in the 

words "infinite length ". 

For the second case, the situation is different. During each communication 

session, an exchange by significant amount of IP-packets takes place. Assume that 

first packet has appeared at the moment  . It means next packet will arrive up till 

time moment   with probability close to 1. The value ( )   depends on some 

characteristics of packet network, types of traffic, etc. In any case, this value is rel-

atively small. Therefore function ( )flA t  should be selected from the distributions 

defined within interval  ,  . 



Incoming traffic aggregated in the input of switching node depends on num-

ber of connected user-network interface and form of function. If this function can 

be presented by distribution ( )ilA t  then incoming traffic corresponds to distribution 

( )A t  defined within interval  ,0  . Otherwise incoming traffic will be described 

by means of distribution ( )A t  defined within interval of finite length. 

Random variable 
it  has a number of features. One of them is high value of 

coefficient of variation for some types of traffic. This fact is confirmed by the re-

sults of measurements. The considered task is investigation of difference between 

characteristics of requests delays for two queueing systems. Distinction between 

these systems lies in the type of functions ( )A t . First function belongs to the type 

( )ilA t . Second function belongs to the type ( )flA t . For both types of functions, av-

erage values ( )1A  and coefficients of variation 
AC  are assumed to be identical.  

Considered models 

Consider two teletraffic models belonging to the / /1G D  family. This des-

ignation is based on Kendall's notation [7]. Digit "1" in a third position means that 

the system uses a single service unit. The second symbol indicates that a service 

time of requests is constant. This assumption is appropriate for packet switches. 

Letter "G" in the first position is used for input process with general distribution 

law. Functions ( )flA t  will define the first teletraffic models. For the second tel-

etraffic models, functions ( )ilA t  will be used. 

Assume that both types of distributions have finite values of the mean ( )1A  

and the coefficient of variation AC . Both models are investigated for different 

ranges of AC . For the first and second examples, AC 1 . Condition AC 1  is used 

for the third example.  

  



First example 

First model with function ( )flA t  is presented by uniform distribution on the 

interval  ,  . For the same model, Erlang distribution with k  as the shape pa-

rameter is used as example of function ( )ilA t . Value   is called the rate parameter 

for Erlang distribution. In Kendall's notation, studied models are referred to as 

/ /1U D  and / /1kE D / respectively.  

Distribution characteristics ( )1A  and 
AC  should be identical for the both 

functions. This condition allows us to write the following expressions [5]: 
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The simplest solution is obtained when k 3 . Then 0  . In this case val-

ues   and   are interconnected as follows:  

.
2




           (2) 

Mean delay time ( )1S  and corresponding coefficient of variation SC  are con-

sidered as the functions of the load  . This value is calculated as the ratio of ( )1B  

to ( )1A . Hereinafter, the value of ( )1B  is equal to one. For the proposed model, ( )1B  

is mean value of processing time of requests.  

Delay characteristics were obtained by simulation. Estimation of functions 

( ) ( )1S F   indicate that substantial delay is inherent in the distributions ( )flA t . 

The distinction of values ( )1S  is explained by the distribution of busy period [8] for 

both models. Functions ( )SC F   are shown in figure 2. Obviously the coeffi-

cient of variation SC  are also more for distributions ( )flA t .  
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Figure 2. Coefficient of variation 
SC  as a function of load   under 

AC 1  

It is interesting to check the validity of these conclusions under other distri-

butions of service time. One of other distributions is considered in the next section 

of the article. 

Second example 

Similar results can be obtained for models / /1U M  and / /1kE M . Symbol 

" "M  corresponds to exponential distribution of service time. For both model, dis-

tribution function of the delay ( )S t  is well known [8]: 

( )
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Value   lies within the range  ,0 1 . For calculation of this value, Laplace 

transform *( )A s  of the function ( )A t  should be found. Then   will be root of the 

following equation:  

 * ( ) ( ) .1 1A B B           (4) 

Laplace transforms *( )A s  for functions ( )flA t  and ( )ilA t  are given for in-

stance in handbook [9]. Values   calculated for the second example are shown in 

table 1. The difference between the values   for both models are placed in the bot-

tom row of the table. 



Table 1. Values   for considered models and their difference 

Load   0,1 0,3 0,5 0,7 0,9 

,1 model / /kE M 1  0,013 0,132 0,331 0,575 0,842 

,2 model / /U M 1 0,053 0,183 0,361 0,587 0,853 

Difference, % 75,5% 27,9% 8,3% 2,0% 1,3% 

For this example, 2 1  . This means that average delay and its variance 

will always be greater for distributions of the form ( )flA t . Calculations based on 

some other distributions of service time led to the following conclusion: for any 

distribution of service time two inequalities are true: 

( ) ( ) , .fl 1 il 1 fl il

S SS S C C         (5) 

Left superscript at the parameters of the delay determines the nature of the 

incoming traffic.  

Third example 

In some cases, coefficient of variation AC  is more than one. To solve this 

problem the following models are suitable: / /1B D  and / /1W D . Symbols " "B  

and " "W  are used for designation of beta distribution and Weibull distribution re-

spectively.  

For beta distribution with parameters u  and v , values ( )1A  and AC  are cal-

culated by the following formulas [5]: 
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For investigation of the model / /1B M  it is needed to define parameters u  

and v . These values are estimated from the formulas (6): 
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For Weibull distribution with parameters a  and c , values ( )1A  and 
AC  are 

calculated by the following formulas [5]: 
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     (8) 

Values ( )1A  and 
AC  calculated by formulas (6) and (8) should be identical. 

Parameters a  and c  from expressions (8) can be found only numerically.  

Analysis of the functions ( ) ( )1S F   shows that a substantial delay is inher-

ent in the distributions ( )flA t . Thus the conclusion obtained for the first and second 

examples is valid also for large values of the coefficient of variation AC . Behaviour 

of functions ( ) ( )1S F   are depicted in figure 3. These functions are plotted for 

coefficient of variation AC 10 . Delay characteristics were obtained by simulation 

as in the first example.  
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Figure 3. Average delay ( )1S  as a function of load   under AC 1  



The values on the y-axis indicate the possibility of a large queue of de-

mands. For such models, waiting time distribution becomes asymptotically expo-

nential one [10]. This means 
SC 1 . 

The usage of other distributions does not change the character of the curves. 

In particular, this conclusion was confirmed using hyperexponential distribution 

and Pareto distribution. This means inequalities (5) are also true for the distribu-

tions of incoming traffic with high values of the coefficient of variation AC . 

Conclusion 

The purpose of this article is simple. The distributions that are defined on in-

terval of finite length are very useful for investigation of incoming traffic in packet 

networks. Analytical expressions and simulation results confirmed the effective-

ness of the proposed approach to the description of the downstream applications. 
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Abstract 

A significant portion of the investigations related to the incoming traffic in 

packet networks is based on models with so-called heavy-tails. This article focuses 

on models that can be called "without tails". This name may be used due to the fact 

that we consider the distribution of incoming traffic defined on a finite time inter-

val. Models with such distributions describe the incoming traffic in packet net-

works more correctly. Mean delay and coefficient of variation for proposed models 

are larger than the same values in the models with heavy-tails.  

Keywords: incoming traffic, teletraffic model, distribution, mean delay, 

coefficient of variation.  


